

Fifth Semester B.E. Degree Examination, June/July 2015 Naval Architecture – I

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Explain Simpson's first rule.

(10 Marks)

b. Define displacement and Buoyancy.

(04 Marks)

- c. A ship displaces 12240 m³ of sea water at a particular draught:
 - i) Calculate the displacement of the ship.
 - ii) How many tonnes of cargo would have to be discharged for the vessel to float at the same draught in fresh water? (06 Marks)
- 2 a. Explain all the four coefficient of forms.

(12 Marks)

- b. A ship 135 m long, 18 m beam and 7.6 m draught has a displacement of 14000 tonne. The area of the load water plane is 1925 m² and area of the immersed midship section 130 m². Calculate: (i) C_w, (ii) C_m, (iii) C_b, (iv) C_p. (08 Marks)
- 3 a. Explain wetted surface area.

(12 Marks)

- b. A ship of 5000 tonne displacement, 95 m long, floats at a draught of 5.5 m. Calculate the wetted surface area of the ship:
 - i) Using Denny's formula
 - ii) Using Taylor's formula with c = 2.6.

(08 Marks)

4 a. Explain inclining experiment.

(12 Marks)

b. A mass of 6 tonne is moved transversely through a distance of 14 m on a ship of 4300 tonne displacement, when the deflection of an 11 m pendulum is found to be 120 mm. The transverse metacentre is 7.25 m above the keel. Determine the height of centre of gravity above the keel. (08 Marks)

PART - B

5 a. Explain effect of suspended mass.

(10 Marks)

- A ship of 10000 tonne displacement has a mass of 60 tonne lying on the deck. A derrick, whose head is 7.5 m above the C.G. of the mass, is used to place the mass on the tank top 10.5 m below the deck. Calculate the shift in the Vessel's centre of gravity, when the mass is: (i) Just clear of the deck, (ii) At the derrick head, (iii) In its final position. (10 Marks)
- **6** Explain change in trim due to adding of masses.

(20 Marks)

7 a. Explain Docking stability.

(10 Marks)

b. Write a note on grounding of the ship.

(10 Marks)

8 a. Write a note on frictional resistance.

- (10 Marks)
- b. A ship whose wetted surface area is 5150 m² travels at 15 knots, calculate the frictional resistance and power required to overcome this resistance. (10 Marks)